How complex is the topological conjugacy relation of transitive maps?

Benjamin Vejnar

Charles University, Prague, Czechia

November, 2024

How complex is the homeomorphism relation

on various subclasses of compact metric spaces?

resp.

How complex is the **conjugacy** relation

of continuous selfmaps on such spaces?

Framework: invariant descriptive set theory

Definition

- Let X, Y be sets,
- let *E*, *F* be equivalence relations (ER) on *X* and *Y* respectively. A map $\varphi : X \to Y$ is called a reduction from *E* to *F* if for every two points $x, x' \in X$ we have $xEx' \iff \varphi(x)F\varphi(x')$.

Definition

- Let X, Y be Polish spaces (standard Borel spaces),
- let E, F be ERs on X, Y respectively.

We say that *E* is Borel reducible to *F*, $(E \leq_B F)$, if there is a Borel measurable reduction from *E* to *F*.

We say that *E* is Borel bireducible with *F*, $(E \sim_B F)$, if $E \leq_B F$ and $F \leq_B E$.

< ロト < 同ト < ヨト < ヨト

3/14

Complexity degrees and benchmarks

- universal analytic ER: E_{∞}
 - the most complex among all analytic ERs
 - isomorphism ER of separable Banach spaces (Ferenczi, Louveau, Rosendal)
- universal orbit ER: $E_{G_{\infty}}$
 - the most complex among all orbit ERs induced by Polish groups
 - isometry ER of complete separable metric spaces (Gao, Kechris)
 - isometry ER of separable Banach spaces (Melleray)
- S_{∞} -universal orbit ER: $E_{S_{\infty}}$
 - ullet the most complex among all orbit ERs generated by the group ${\it S}_\infty$
 - isomorphism ER of countable graphs, or countable linear orders
 - isomorphism ER of most countable structures (Friedman, Stanley)
- equality of countable sets: $E_{=+}$
 - the most complex Π^0_3 ER induced by ${\it S}_\infty$
 - $(x_n), (y_n) \in \mathbb{R}^{\mathbb{N}}$ are equivalent iff $\{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\}$

$E_{=^+} \lneq_B E_{S_{\infty}} \lneq_B E_{G_{\infty}} \lneq_B E_{\infty}$

- compact metric spaces
- the hyperspace K(X) of compact subsets of X, Vietoris topology
- Hilbert cube Q contains a copy of every compact metric space
- the homeo ER:

$$\{(K, L) \in K(Q)^2 : K \text{ homeo to } L\}$$

- $C(X) = \{f : X \to X, \text{ continuous}\}$ with the uniform topology
- $H(X) = \{f \in C(X) : f \text{ invertible}\}, a Polish subspace of <math>C(X)$
- the conjugacy ER:

$$\{(f,g)\in C(X)^2: \exists h\in H(X): h\circ f=g\circ h\}$$

Theorem

2016 Zielinski: Homeo ER on compacta $\sim_B E_{G_{\infty}}$ based on Sabok: isomorphism ER of C*-algebras resp. affine homeo of Choquet simplices 2017 Chang, Gao: Homeo ER on continua $\sim_B E_{G_{\infty}}$ 2018 Cieśla: Homeo ER on LC continua $\sim_B E_{G_{\infty}}$ 2018 Krupski, V.: Homeo ER on AR $\sim_B E_{G_{\infty}}$

locally connected (LC) = having a base formed by connected sets absolute retract (AR) = retract of the Hilbert cube $[0, 1]^{\mathbb{N}}$

It is not clear to me, whether we can get $E_{G_{\infty}}$ on some subclass of countably dimensional compacta (coanalytic set).

Low-dimensional topological classes

Definition

- 0-dimensional compacta
 - = closed subspaces of the Cantor set
- dendrites
 - = 1-dimensional AR
- rim-finite (RF) continua
 - = have a base with finite boundaries
- rim-finite compacta
- $\mathsf{AR}(\mathbb{R}^2) = \mathsf{AR}$ in the plane

Dendrite \iff RF and AR(\mathbb{R}^2) 0-dimensional \implies RF

Low dimensional case

We are omitting: 'Homeomorphism ER on'

Theorem

2001 Camerlo, Gao: 0-dimensional compacta $\sim_B E_{S_{\infty}}$ (Stone duality) 2005 Camerlo, Darji, Marcone: dendrites $\sim_B E_{S_{\infty}}$ 2018 Krupski, V.: rim-finite continua $\sim_B E_{S_{\infty}}$ 2019 Dudák, V.: AR(\mathbb{R}^2) $\sim_B E_{S_{\infty}}$ (reduction to the boundary)

2019 Dudák, V.: $AR(\mathbb{R}^3)$, $LC(\mathbb{R}^2) \not\sim_B E_{S_{\infty}}$ 2018 Krupski, V.: rim-finite compacta $\not\sim_B E_{S_{\infty}}$ (Hjorth: turbulence)

dendrites = 1-dimensional AR rim-finite = having a base with finite boundaries

Some natural class with complexity strictly between $E_{S_{\infty}}$ and $E_{G_{\infty}}$?

Benjamin Vejnar (Prague)

< □ > < □ > < □ > < □ > < □ > < □ >

2000 Hjorth: conjugacy ER of interval homeos $\sim_B E_{S_{\infty}}$ 2001 Camerlo, Gao: conjugacy of Cantor set homeos $\sim_B E_{S_{\infty}}$ 2023 Bruin, V.: conjugacy of interval maps $\sim_B E_{S_{\infty}}$ conjugacy of Hilbert cube homeos: $\sim_B E_{G_{\infty}}$ (fixed points)

Hjorth's conjecture

Every ER which is induced by a continuous action of the group $\mathcal{H}([0,1])$ is Borel reducible to $E_{S_{\infty}}$, i.e.

$$E_{\mathcal{H}([0,1])} \leq_B E_{S_{\infty}}.$$

Work in progress with M. Hevessy (towards confirming the conjecture)

M. Foreman (2022): How complex is the conjugacy ER of transitive Cantor set homeos?

L. Ding (Nankai Logic seminar): How complex is the conjugacy relation of transitive homeos on compact metric spaces?

- We answer both questions by essentially the same technique, in spite of that the complexity levels differ.
- Moreover, for the second question it is enough to consider Hilbert cube homeos only.

10/14

Transitive homeos of the Cantor set

Theorem

Let F be the conjugacy ER of transitive homeos of the Cantor set. Then F $\sim_B E_{S_\infty}.$

Proof.

- $F \leq_B$ conjugacy ER of all homeos $\leq_B E_{S_{\infty}}$. Thus $F \leq_B E_{S_{\infty}}$.
- Consider zero-dimensional compacta with at least two points.
- Let *E* be the homeo ER of such spaces (hyperspace coding).
- Camerlo, Gao: $E_{S_{\infty}} \leq_B E$. It is enough to prove $E \leq_B F$.
- $\varphi: A \mapsto (A^{\mathbb{Z}}, \sigma_A)$
- A and B are homeomorphic iff $\varphi(A)$ and $\varphi(B)$ are conjugate.
- Note that $A^{\mathbb{Z}}$ is homeo to the Cantor set.
- Cheating: not a fixed Cantor set in the range. Burgess selection theorem does the job. Consequently $E_{S_{\infty}} \leq_B F$.

Transitive homeos of the Hilbert cube

Theorem

Let F be the conjugacy ER of transitive homoes of the Hilbert cube. Then F $\sim_B E_{G_\infty}.$

Proof.

- F is induced by action of the Polish group H(Q), thus $F \leq_B E_{G_{\infty}}$.
- Consider nondegenerate retracts of the Hilbert cube (AR).
- Let E be the homeo ER of such spaces.
- Krupski, V.: $E_{G_{\infty}} \leq_B E$. It is enough to prove $E \leq_B F$.
- $\varphi: A \mapsto (A^{\mathbb{Z}}, \sigma_A)$
- A and B are homeomorphic iff $\varphi(A)$ and $\varphi(B)$ are conjugate.
- Note that $A^{\mathbb{Z}}$ is homeo to the Hilbert cube (Toruńczyk).
- Cheating: not a fixed Hilbert cube in the range. Burgess selection theorem does the job. Consequently $E_{G_{\infty}} \leq_B F$.

Conjugacy of transitive maps on [0, 1] or circle

Theorem

Conjugacy of transitive maps on [0,1] or circle $\leq_B E_{=^+}$.

Proof.

- Let $f:[0,1] \rightarrow [0,1]$ be transitive.
- $P_n = \{x \in [0,1] : f^n(x) = x\}...$ closed and nowhere dense.
- Let $P_f = \bigcup Acc(P_n)...$ countable
- Periodic points of f are dense, hence P_f is dense.
- Let $\varphi(f) = \{((f^k(x_i)?f^l(x_j))_{k,l,i,j} : x_1, ..., x_n \in P_f\}$ where ? is one of <, =, >.
- φ can be coded to obtain a Borel reduction to $E_{=+}$.

Can we get \sim_B in the theorem? Modifying Denjoy circle homeo?

Conjugacy of minimal homeos - open questions

- 1. How complex is the conjugacy relation of minimal Cantor set homeos?
 - Bratteli diagrams. . . exceptional point
 - Kaya 2017: pointed minimal Cantor set homeos
 - Deka, García-Ramos, Kasprzak, Kunde, Kwietniak 202?: non Borel
- 2. How complex is the conjugacy relation of minimal homeos?
 - Li, Peng 2024: Conjugacy ER of minimal homeos is not $\leq_B E_{S_{\infty}}$.
 - Sabok conjecture: $\sim_B E_{G_{\infty}}$

3. Is there a concrete compact space to which Question 2 could be restricted? Perhaps the infinite dimensional torus?

THANK YOU FOR YOUR ATTENTION

14/14

 Benjamin Vejnar (Prague)
 Complexity of transitive homeomorphisms
 September, 2024